top of page

Selected Publications

2024

2023

2022

2021

2020

Older

  • Tang, X.; Atzin, N.; Mozaffari, A.; Das, S.; Abbott, N. L.; de Pablo, J. J. Generation and Propagation of Flexoelectricity-Induced Solitons in Nematic Liquid Crystals ACS Nano 2024. https://doi.org/10.1021/acsnano.3c10800.

  • Das, S.; Atzin, N.; Tang, X.; Mozaffari, A.; Pablo, J. de; Abbott, N. L. Jetting and Droplet Formation Driven by Interfacial Electrohydrodynamic Effects Mediated by Solitons in Liquid Crystals. Phys. Rev. Lett. 2023, 131 (9), 098101. https://doi.org/10.1103/PhysRevLett.131.098101.

  • Atzin, N.; Mozaffari, A.; Tang, X.; Das, S.; Abbott, N. L.; de Pablo, J. J. A Minimal Model of Solitons in Nematic Liquid Crystals. Phys. Rev. Lett. 2023, 131 (18), 188101. https://doi.org/10.1103/PhysRevLett.131.188101.

  • Das, S.; Roh, S.; Atzin, N.; Mozaffari, A.; Tang, X.; De Pablo, J. J.; Abbott, N. L. Programming Solitons in Liquid Crystals Using Surface Chemistry. Langmuir 2022, 38 (11), 3575–3584. https://doi.org/10.1021/acs.langmuir.2c00231.

  • Das, S.; Noh, J.; Cao, W.; Sun, H.; Gianneschi, N. C.; Abbott, N. L. Using Nanoscopic Solvent Defects for the Spatial and Temporal Manipulation of Single Assemblies of Molecules. Nano Lett. 2022, 22 (18), 7506–7514. https://doi.org/10.1021/ACS.NANOLETT.2C02454.

  • Atzin, N.; Mozaffari, A.; Tang, X.; Das, S.; Abbott, N. L.; de Pablo, J. J. A Minimal Model of Solitons in Nematic Liquid Crystals. https://doi.org/10.48550/arxiv.2210.08666.

  • Tang, X.; Mozaffari, A.; Atzin, N.; Das, S.; Abbott, N. L.; de Pablo, J. J. Generation and Propagation of Solitary Waves in Nematic Liquid Crystals. https://doi.org/10.48550/arxiv.2211.01453.

  • Yu, J.; Liang, C.; Lee, M.; Das, S.; Ye, A.; Mujid, F.; Poddar, P. K.; Cheng, B.; Abbott, N. L.; Park, J. Two-Dimensional Mechanics of Atomically Thin Solids on Water. Nano Lett. 2022. https://doi.org/10.1021/ACS.NANOLETT.2C02499.

  • Das, S.; Katiyar, A.; Rohilla, N.; Bonnecaze, R. T.; Nguyen, Q. A Methodology for Chemical Formulation for Wettability Alteration Induced Water Imbibition in Carbonate Reservoirs. J. Pet. Sci. Eng. 2021, 198, 108136. https://doi.org/10.1016/j.petrol.2020.108136.

  • Das, S.; Katiyar, A.; Rohilla, N.; Nguyen, Q. P.; Bonnecaze, R. T. Wettability Alteration and Adsorption of Mixed Nonionic and Anionic Surfactants on Carbonates. Langmuir 2020, 36 (50), 15410–15422. https://doi.org/10.1021/acs.langmuir.0c03022.

  • Das, S.; Khabaz, F.; Nguyen, Q.; Bonnecaze, R. T. Molecular Dynamics Simulations of Aqueous Nonionic Surfactants on a Carbonate Surface. J. Phys. Chem. B 2020, 124 (37), 8158–8166. https://doi.org/10.1021/acs.jpcb.0c03997.

  • Das, S.; Katiyar, A.; Rohilla, N.; Nguyen, Q.; Bonnecaze, R. T. Universal Scaling of Adsorption of Nonionic Surfactants on Carbonates Using Cloud Point Temperatures. J. Colloid Interface Sci. 2020, 577, 431–440. https://doi.org/10.1016/j.jcis.2020.05.063.

  • Das, S.; Nguyen, Q.; Patil, P. D.; Yu, W.; Bonnecaze, R. T. Wettability Alteration of Calcite by Nonionic Surfactants. Langmuir 2018, 34 (36), 10650–10658. https://doi.org/10.1021/acs.langmuir.8b02098.

  • Das, S.; Shahriari, A.; Bahadur, V.; Bonnecaze, R. T. Analysis of the Instability Underlying Electrostatic Suppression of the Leidenfrost State. Phys. Rev. Fluids 2017, 2, 34001. https://doi.org/10.1103/PhysRevFluids.2.034001.

  • Bhaumik, S. K.; Das, S.; Chakraborty, S.; Dasgupta, S. Droplet Transport through Dielectrophoretic Actuation Using Line Electrode. Microfluid. Nanofluidics 2014, 16 (3), 597–603. https://doi.org/10.1007/s10404-013-1242-5.

bottom of page